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Lightweight Semantic-aided Localization with
Spinning LiDAR Sensor
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Abstract—Autonomous driving demands robust and precise
vehicle localization in complex environments with limited on-
board computational resources. Incorporating reliable semantic
information with localization algorithms can increase accuracy
remarkably, however, the process of extracting semantic infor-
mation from LiDAR point clouds and matching it to semantic
maps is computationally intensive. Moreover, pure semantic
localization cannot achieve the robustness requirements for safe
self-driving as the necessary quantity of semantic landmarks
cannot be guaranteed under extreme conditions. In this paper,
we present a lightweight semantic-aided localization method that
improves upon traditional techniques in two ways. First, we
propose a highly efficient pipeline to extract three semantic
classes from a LiDAR scan. Second, instead of semantic 3D point
cloud registration, map matching is performed through 2D key
point matching. We then integrate these two functions into a
dynamic semantic aided localization framework. Our on-road
experiments demonstrate that the proposed method achieves both
the high accuracy of semantic localization and the robustness
of non-semantic localization. With our algorithm consuming
under 10% of CPU resources, we observe reduced positioning
error, especially peak error, when comparing to non-semantic
counterparts.

Index Terms—Autonomous vehicle, vehicle localization, seman-
tic localization, 3D-LiDAR

I. INTRODUCTION

AUTONOMOUS driving technology has rapidly grown in
the past decade. In order to improve the intelligence

of autonomous vehicles, highly precise vehicle positioning
systems are required. Traditional localization systems based
on GNSS+IMU data cannot meet accuracy demands due to
the insufficient number of visible satellites and multi-path
signal reflections. And when using a low-cost IMU, substantial
accuracy degradation can be expected during GNSS outage.
The use of monocular or stereo camera systems are another
solution for autonomous vehicle localization. Yet, while envi-
ronmental features (e.g road painting markers) can be extracted
and matched to prior feature maps, feature extraction remains
susceptible to noise and poor lighting conditions. In contrast,
the LiDAR sensor is insensitive to illumination changes and
captures the reflective intensities and 3D geometry of the
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environment. Modern spinning LiDAR sensors used on au-
tonomous vehicles can provide sparse point cloud outputs at
above 10 Hz, at a range accuracy within a few centimeters.
Thus, matching observations from 3D LiDAR scans with
prior maps has become an effective and well-used method for
vehicle localization [1], [2].

In theory, leveraging semantic information obtained through
semantic segmentation can improve accuracy and enable in-
telligent behaviour for navigation [3]. There are however
two practical drawbacks associated with applying semantic
localization systems on mass-produced vehicles. First, the
computing resources on mass-produced vehicles are limited.
With the majority of the computing power reserved for percep-
tion and planning tasks, only very limited computing resources
can be left for localization. Many reported methods cannot be
used for online operation as scarce computational resources
yield slower processing rates. Some methods propose the
use of a GPU for semantic feature extraction (e.g. semantic
segmentation) and complete CPU usage for matching; this is
infeasible from a practical perspective. Second, the robust-
ness of pure semantic localization is not comparable to non-
semantic methods. Errors that occur in semantic segmentation
will be propagated to map matching and ultimately affect the
localization result. A lack of available semantic landmarks
in extreme environments has the capacity to crash pure se-
mantic algorithms. Moreover, map matching methods based
on semantic 3D point cloud registration are unable to self-
correct. Any errors from improper matching will be propagated
and increase over time, eventually leading to a diverged
localization result. While particle based matching methods can
remedy this problem, they come with an exponential growth
in computation.

In this paper, we introduce a lightweight semantic-aided
localization system that operates directly on point clouds from
a spinning LiDAR sensor, with all computation (i.e. semantic
segmentation and map matching) accomplished with less than
10% of the computing resources of a desktop CPU. The pro-
posed method combines the advantages of pure semantic and
non-semantic methods by incorporating semantic landmarks -
pole-like objects, vertical planes and road markers into a non-
semantic system backbone. The algorithm can dynamically
adjust estimation dependency over the various landmark types
based on the quantity of landmarks, the spatial distribution
of landmarks, and the quality of matching. With this unique
strategy, the accuracy of pure semantic positioning and ro-
bustness of non-semantic positioning can be fully realized.
Furthermore, our design takes into consideration the actual
needs of mass-produced vehicles in terms of map size and
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LiDAR field of view (FOV). The semantic tags and the spatial
distribution of the point cloud are compressed into a low-
memory single channel 8-bit image. The proposed algorithm
is tested on a LiDAR embedded in the vehicle’s bumper with
a FOV of slightly greater than 180 degrees.

II. RELATED WORK

Current LiDAR-based localization algorithms can be di-
vided into two categories. The first category of methods do
not extract any semantic information from the point cloud.
They only build the map and determine the location of the
vehicle based on the spatial distribution characteristics of
the point cloud. The works of [2], [4] show that this type
of methods can be successfully used in both indoor and
urban environments. The second category of methods extract
landmarks with semantic information from the point cloud.
Due to the ubiquity, long-term stability and geometric features
that can be easily extracted by 3D LiDAR, pole-like objects
are the most commonly used landmark for vehicle localization
in urban environments. Wu et al. [5] use street light poles
as the landmarks in their localization algorithm. Sefati et al.
[6] practice the pole-based localization in urban area with
high rate of dynamic objects. Schaefer [7] investigates the
feasibility of long-term urban localization by using different
types of pole-like objects, such as traffic signs, street lamps,
and tree trunks. Certainly, pole-like objects are not the only
landmark suitable for vehicle localization. Lane markers are
also very ideal 2D landmarks for vehicle localization. The
works of Tao [8] and Schreiber [9] demonstrated that the lane
markers can help to achieve high localization accuracy. Im et
al. [10] use both lane markers and building outer wall together
in localization. Similar to the lane marker, curb is also a usable
2D marker for localization in urban environment [11], [12].
While, its main disadvantage is that it is usually blocked by
vehicles parked on the side of the road. In addition, Im et al.
[13] explore the urban localization based on the corner features
of buildings.

In recent years, deep learning-based semantic segmentation
methods have been applied in SLAM, mapping and local-
ization. There is a rich body of scientific works focused on
camera-based semantic localization. Semantic SLAM, map-
ping and localization techniques have been proposed for use
with monocular cameras [14], [15], [16], stereo cameras
[17], [18], [19], [20], and RGB-D sensors [21], [22], [23],
[24], [25]. Most of these methods are developed for indoor
environments, and some display intelligent behaviours such as
filtering dynamic objects prior to map matching. Some studies
attempt to improve the performance of semantic SLAM,
mapping, or localization with a dual 3D LiDAR sensor and
camera setup [26], [27], [28], [29]. In these works, semantic
information is mainly extracted from the camera while the 3D
LiDAR sensor play a secondary role in providing geometrical
information. Learning-based semantic segmentation is also
used in pure LiDAR solutions [30], [31], [32]. Sun et al.
[33] propose a learned probabilistic model to speed up the
LiDAR-based localization using particles. Chen et al. [34]
develop the OverlapNet, which uses semantic information of

LiDAR scans to find loop closures. Chen et al. [35] propose
a learned observation model for LiDAR-based Monte Carlo
localization with a particle filter. However, the advantage of
acquiring more detailed classification results with learning-
based methods comes at a computational cost, only these
semantic segmentation algorithms with real-time performance
[36], [37] are suitable to be used in localization.

III. OUR APPROACH

Our method is based on a particle filter. When the system
runs for the first time, these particles are initialized with a low-
cost GPS receiver. In daily operation, the system will record
the last position and heading results, which are obtained by the
LiDAR based localization algorithm, before closing. When the
system restarts, that record will be used to initialize particles.
The states of particles are predicted by using IMU+wheel
odometry, and are updated by matching the LiDAR obser-
vation with a prior 2D semantic map. The update process
entails three steps: semantic landmark extraction, 2D map
compression, and 2D map matching. The semantic extraction
pipeline takes a raw LiDAR point cloud and outputs a point
cloud segmented by semantic class categories. With each point
in the point cloud assigned a semantic tag, the point cloud
is efficiently converted into a 2D feature image. Key points
are then located on the 2D feature image and matched with
the prior map to update the weights of particles. The prior
2D semantic map is managed with the method introduced in
[2]. The entire map is divided into square map tiles of 100
meters by 100 meters. The vehicle dynamically loads 9 map
tiles according to its current position, and stitches them into
a local map covering the area of 300 meters by 300 meters
around the vehicle.

A. Semantic extraction from LiDAR point cloud

In this step, we explain the process of extracting semantic
landmarks from a raw LiDAR point cloud. Semantic land-
marks include pole-like objects, vertical planes, and road
marks; all remaining points that not fall into one of these three
categories are tagged with a non-semantic label. Our entire
system is intended to run in real-time on an on-board computer
without a GPU, motivating a design low in computational
complexity.

Currently, most of the autonomous vehicles are equipped
with a spinning LiDAR sensor that emits 8 ∼ 128 lasers
per measurement, which is called a sector, and there are
approximately 2000 sectors in each revolution. The seman-
tic extraction can be accelerated by utilizing the geometric
descriptors of the spinning LiDAR. The semantic extraction
procedure is shown in Fig. 1. First, the curvature of each
point is computed and the point cloud is segmented into
ground/ceiling and non-horizontal objects. At the same time,
vertical seeds with a high likelihood of lying on a vertical
object are extracted. Then, road marks are extracted with an
intensity filter, and non-horizontal points are clustered with
a region growing algorithm. The region growth starts from
the vertical seeds, hence, most of the vertical objects such
as the poles and walls are clustered. Finally, these clusters
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are classified according to the size of their bounding box and
average curvature. There are three categories: pole-like objects,
vertical planes and non-semantic clusters. Pole-like objects,
vertical planes and road marks are used as the semantic
landmarks. The non-semantic clusters and the unclustered
points are merged and used as non-semantic landmarks.

Fig. 1: Flow chart of the proposed algorithm. Red box:
semantic features for localization; Green box: non-semantic
features for localization.

1) LiDAR point cloud pre-processing: The z axis is defined
as the spinning axis of the LiDAR. The elevation and azimuth
of each laser point can be written as:

λ = arctan
z√

x2 + y2
(1)

ψ = arctan
y

x
(2)

Using the known mounting angles of the laser emitters, the
relationship between the elevation and the laser emitter number
(ring number) can be established, and the 3D point cloud can
be projected into a range image. Each row of the range image
corresponds to a ring of the LiDAR scan, and each column
corresponds to a sector. Several elements of the range image
may be empty as not all emitted lasers receive echoes. We
then need to compute the horizontal distance and curvature of
each non-empty range image element to be used for region
growth clustering and classification.

2) Horizontal scan - curvature computation: The curvature
of a scan line encodes characteristics of an object’s surface.
The smoothly constructed surfaces of artificial objects are
normally associated with smaller curvatures, while the scan
lines on natural objects usually have a larger curvature. Each
row of the range image corresponds to a scan line. Assuming
that there are 2k + 1 continuous elements in a row of the
range image, the coordinates of the point is denoted by
[xj , yj , zj ]

T . i is the middle point. The curvature of point i
can be approximated by [38]:

c =
1

2k‖ri‖
‖

∑
i−k≤j≤i+k,j 6=i

(ri − rj) ‖ (3)

where ri =
√
x2i + y2i + z2i and rj =

√
x2j + y2j + z2j .

In this paper, k is set to 5, and the result is stored in a
matrix with the same dimensions of the range image.

3) Vertical scan - sector segmentation: As depicted in Fig.
2, laser beams in a sector are numbered in ascending order of
elevation. The inclination of the segment between two adjacent
laser points can be written as:

ϑ = arctan

 zi+1 − zi√
x2i+1 + y2i+1 −

√
x2i + y2i

 (4)

where i and i + 1 are the ring numbers of the adjacent laser
points. The laser points can be classified into four categories
by using the inclination ϑ and their coordinates.
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Fig. 2: Laser beams in a sector. Red points: laser points on the
ground or ceiling; Blue points: laser points on vertical objects;
Yellow points: missed points

The four classes are the ground points PCG , ceiling points
PCC , vertical seeds PCV , and the point cloud without ground
and ceiling PCD.

1) PCG : |ϑ| < ε and
√
x2i+1 + y2i+1 >

√
x2i + y2i ;

2) PCC : |ϑ| < ε and
√
x2i+1 + y2i+1 <

√
x2i + y2i ;

3) PCV : |ϑ− π/2| < ε;
4) PCD: PCD = PC \ (PCG ∪ PCC).
Here, PC denotes the raw point cloud and ε is an inclination

threshold. Based on the maximum ground inclination in an
ordinary environment, it is empirically set to 15◦. Due to long
distance and low reflectivity, some points may be missed. If
adjacent points on both sides are lost, we classify the center
point as PCD.

Ceiling points PCC are not used in the following steps. High
intensity points in PCG are classified as road marks. PCD
includes all non-horizontal objects and will be compressed
into 2D images to be used as the non-semantic features. At
the same time, the semantic features for localization will
also be extracted from a subset of PCD with region growing
algorithm. This subset, PCV , contains all vertical seeds of
potential pole-like objects and vertical planes.

4) Region growing clustering: In Fig. 3a, the black points
are the raw LiDAR point cloud, and the purple points are
vertical seeds obtained by vertical scan. It can be seen that the
majority of vertical planes and pole-like objects are covered
by the vertical seeds. The vertical seeds are subject to noise,
and few are not on any vertical object; this occurs when two
unrelated points happen to lie on the same vertical line.

Region growing clustering started from the vertical seeds
is used to get more clear and complete vertical objects. On
the range image, all the adjacent points of a vertical seed
are checked. If an adjacent point belongs to PCD and the
difference of the horizontal distance is less than 20 cm,
it is merged into the current cluster. A finalized cluster is
obtained by repeating this procedure until no new adjacent
point can be merged. After applying this process to all vertical
seeds, we acquire a list of clusters, which is denoted by
{C|Ci, i = 1, . . . , N}.
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(a) Vertical seeds (b) Region growing clustering
and classification result

Fig. 3: Vertical seeds and region growing clustering and clas-
sification result (Black: original point cloud; Purple: vertical
seeds; Red: vertical plane; Blue: pole-like object; Green: road
mark)

Fig. 3b shows the results of region growing clustering. The
red points show the vertical planes, and the blue points are
the pole-like objects. It can be found that the result of region
growing clustering can better reflect the true shape of vertical
objects. For instance, the vertical seeds of a tree only cover the
trunk, but after region growing clustering the complete shape
is inferred.

5) Fast filtering and classification: A series of clusters were
obtained by region growing clustering from vertical seeds that
have a high probability of being a vertical object of interest.
Most of these clusters are pole-like objects and vertical planes.
While, some of them are not a part of any vertical object.
Usually, they are background objects with irregular shape.
A fast filtering and classification algorithm is developed to
remove these redundant clusters and assign semantic tags to
the remaining clusters. The algorithm is shown below.

Algorithm 1. Fast filtering and classification
Input: A list of clusters. {C|Ci, i = 1, . . . , N}.
Output: A list of pole-like objects P; A list of vertical planes V.

A list of non-semantic objects O
1: for Ci in C do
2: if Ci has more than Nmin points then
3: create the bounding box of Ci, whose dimension is l × w × h;
4: if w < wpole and l < wpole and h > hpole then
5: pushback Ci into P;
6: else if

√
w2 + l2 > mplane or h > hplane then

7: compute the average curvature of Ci, and denote it by ρA;
8: if ρA < ρp then
9: pushback Ci into V;
10: else if
11: pushback Ci into O;
12: end if
13: end if
14: end if
15: end for
16: return P, V, O.

Six thresholds are used in this algorithm. In step 2, Nmin is
used to remove undersized clusters. In step 4, wpole and hpole
are the maximum width and minimal height of a pole. mplane

and hplane in step 6 are used to extract the vertical plane. ρp
in step 8 gives the maximum mean curvature of the man-made
surface. The classification results are shown in Fig. 3b.

B. 2D compression

We acquire a semantic 3D point cloud through the pro-
cess outlined in Section III-A. Since the demand for vehicle

positioning in autonomous driving is mainly 2D (x, y and
heading angle), converting the 3D semantic point cloud into
a 2D feature image serves to both reduce map size and
increase the speed of map matching, meeting the functional
and computational localization requirements.

To convert a point cloud into a 2D feature image, we begin
by voxelizing it in the x − y plane at a 10 cm resolution,
yielding equal sized columns along with height and width of
the map. The vertical extent of each column is from 0 m to
4.2 m, and is divided into 6 equal parts. As shown in Fig. 4,
each 3D voxel occupies a 10 cm × 10 cm × 70 cm cuboid.
If a cuboid is occupied by laser point, it is denoted by 1,
otherwise, it is 0. With this method, the vertical distribution
of laser points within a column can be represented by 6 binary
bits. The other two bits are used to store the semantic tag. Note
that, the space above the road mark is usually not occupied by
any point, so the 6 binary bits are used to save the reflection
intensity of the road mark.

Upper bound

4.2m

Reference elevation

1

0

1

1

0

0

Fig. 4: Converting from 3D point cloud to 2D feature image

Table I shows the encoding format, and Fig. 5 shows a
typical 2D feature image which has been converted from the
single-channel 8-bit form to a color image for visual clarity.
The tags of pole-like objects are denoted by light green,
vertical planes by dark green, road markings by blue, and
non-semantic vertical distribution of the point cloud by red.
The intensity of the red channel corresponds the height of the
object that occupies the cell.

TABLE I: Encoding format

bit b7 b6 b5 b4 b3 b2 b1 b0
Pole-like obj 1 0 0/1 0/1 0/1 0/1 0/1 0/1

Vertical planes 0 1 0/1 0/1 0/1 0/1 0/1 0/1
Road marks 1 1 0/1 0/1 0/1 0/1 0/1 0/1

Non-semantic 0 0 0/1 0/1 0/1 0/1 0/1 0/1

This 2D conversion method is used in both mapping and lo-
calization. In mapping, the city-scale 3D semantic point cloud
will be compressed into a 2D feature map. In localization, a
LiDAR frame will be converted into a 2D feature image in
real-time, and then matched with the map.

C. Map matching and weights update

Localization can be accomplished with a particle filter, with
the wheel or LiDAR odometry used for prediction, and the
update done by matching the observation with the map in
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Fig. 5: 2D feature image

real-time. The map loading method used in this paper is
well described in [2]. Here, we primarily focus on the map
matching method.

1) Key points selection: As expected, the 2D feature image
converted from the segmented and filtered LiDAR point cloud
is typically very sparse. However, we observe on the order of a
thousand non-zero pixels per frame, and matching all non-zero
pixels with the prior map does meet real-time requirements.
Hence, we select a set of key points from the non-zero feature
image pixels. For the pole-like objects and non-semantic
objects, we prefer to select pixels with larger vertical feature
codes as key points, which denote the 2D positions of tall poles
and non-semantic objects. For road marks, these pixels with
larger reflectivity are selected first. The pixels corresponding
to vertical plane are randomly selected. With this method,
the building outline in the bird’s eye view can be effectively
expressed by key points which are evenly distributed on the
wall-ground intersection line. The details of the key points
selection method are shown in algorithm 2.

In algorithm 2, Np, Nv and Nr are the limits on the quantity
of pole-like, vertical plane and road mark key points, and N is
the total number of key points. In our experiments, we set the
values of these parameters to 50, 50, 20 and 300, respectively.
Since the distribution of semantic key points changes with
the environment, we always guarantee that the total number
of key points, N , will be selected for map matching. In this
case where no semantic-key points are available, our algorithm
dynamically degenerates into a non-semantic method.

2) Matching of 2D feature images: Each particle gives a
potential 2D pose of the vehicle. With this 2D pose and the
installation matrix of LiDAR, the selected key points can be
transformed into the map frame. A similarity metric can then
be computed between the key point and the corresponding
pixel on the map. The similarity metric is composed of
two parts. The first being the consistency of the semantic
tag, and the second is the similarity of vertical distribution
(vertical objects) or reflection intensity values (road markings).
Equation 5 shows how a particle weight is computed with
key points of pole-like objects, vertical planes or non-semantic
objects.

wx =
1

Nx

Nx∑
i=1

αi · µi

6
(5)

Nx is the number of key points for class x, αi and µi are
the semantic tag similarity and vertical distribution similarity
of the i-th key point. The value of αi can be obtained from

Algorithm 2. Key points selection
Input: 2D feature image; Key points number: Np, Nv , Nr , N .

P is the set of all pixels in the 2D feature image.
Output: Pole-like KP: Kp; Vertical plane KP: Kv ;

Road mark KP: Kr ; Non-semantic KP: Kn .
1: for Pi in P do
2: if Pi 6= 0 then
3: if (Pi[b7] == 1) and (Pi[b6] == 0) then
4: push back Pi into Pp;
5: else if (Pi[b7] == 0) and (Pi[b6] == 1) then
6: push back Pi into Pv ;
7: else if (Pi[b7] == 1) and (Pi[b6] == 1) then
8: push back Pi into Pr ;
9: else
10: push back Pi into Pn;
11: end if
12: end if
13: end for
14: sort Pp in descending order according to [b5 ∼ b0] bits;
15: if the size of Pp > Np then
16: push back the first Np elements of Pp into Kp;
17: else
18: Kp = Pp;
19: end if
20: random shuffle Pv ;
21: if the size of Pv > Nv then
22: push back the first Nv elements of Pv into Kv ;
23: else
24: Kv = Pv ;
25: end if
26: sort Pr in descending order according to [b5 ∼ b0] bits;
27: if the size of Pr > Nr then
28: push back the first Nr elements of Pr into Kr ;
29: else
30: Kr = Pr ;
31: end if
32: sort Pn in descending order according to [b5 ∼ b0] bits;
33: push back the first N −Np −Nv −Nr elements of Pn into Kn;
34: return Kp, Kv , Kr and Kn.

table II, and µi is the dot product of bits b0-b5 between the
key point and map.

TABLE II: Similarity of semantic tags

LiDAR
Map Pole Plane Road mark Non-sem

Pole 1 0.64 0 0.21
Plane 0.72 1 0 0.24

Road mark 0 0 1 0
Non-sem 0.29 0.22 0 1

For example, a key point with value “10001111” corre-
sponds to a map pixel whose value of “01001011”. It means
that the semantic tag of the key point is pole-like object, while
the semantic tag of the corresponding map pixel is vertical
plane. From the table, we obtain αi equals 0.64. From b0 to
b5, there are four bits that have the same value, so µi equals
4. It is clear that µi ∈ [0, 6], and wx ∈ [0, 1]. wx equal to 1
indicates a complete match of semantic similarity and vertical
distribution between all key points and the map.

Given the key points of road marks, the particle weight can
be updated by:

wr =
1

Nr

Nr∑
i=1

αi · ξi · γi
63× 63

(6)

where ξi is the intensity of the i-th key point (converting
the binary numbers of b0-b5 to decimal). Similarly, γi is the
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intensity of the pixel in the map, and αi is obtained from Table
II. Note that, the semantic tag mismatch of vertical objects, for
example matching a pole to a vertical plane, only attenuates
similarity. The semantic tag mismatch of the road marks causes
αi to return 0. In simple terms, there is no similarity between
road marks and vertical objects.

These values in Table II are obtained by counting all the
pixels of the map. In the map, each pixel is observed many
times and the semantic tag is determined by voting. For
example, a pixel is observed N times, tp votes are pole-
like objects, tv votes are vertical plane and tn votes are
non-semantic objects. The final semantic tag is pole because
tp > tv > tn. The probability that this pixel is a vertical
plane is tv/tp. We extract all the pixels with the tag of pole-
like object from the map, and computing the mean value
of their tv/tp. The motivation for this matching strategy is
robustness, as it accounts for potential error in the clustering
and classification stages by enabling landmarks with different
semantic tags to contribute updates on particle weights given
a similar vertical structure.

3) Fusion of localization results: So far, four sets of
weights have been computed per particle. In an ideal environ-
ment, which is rich in semantic landmarks and has minimal
occlusion from dynamic objects, each weight can be used to
update the particle filter and locate the vehicle independently.
However, the accuracy of independent localization results
depend heavily on (1) the number of available key points, (2)
the quality of matching, (3) spatial distribution of key points,
and (4) environmental characteristics. As illustrated in Fig. 6a,
a large number of key points are clustered together, and Fig.
6b, few key points widely in the space - which scenario is
more beneficial to positioning accuracy?

(a) A large number of key
points are clustered together

(b) Few widely separated key
points

Fig. 6: Key points distribution

Augmented dilution of precision [39] is used to quantify the
effect of the first three factors.

ADOP =

√
trace

(
(ATwA)

−1
)

(7)

where A is a n× 2 matrix, and n is the number of key points
in the current LiDAR frame. Each row of A contains the [x, y]
coordinates of the i-th key point in the LiDAR frame. w is
a n × n diagonal weighting matrix. The diagonal elements
are the matching qualities of key points. For pole-like objects,
vertical planes and non-semantic objects.

w =
1

6

α1 · µ1 0
. . .

0 αNx
· µNx



For road marks

w =
1

63× 63

α1 · ξ1 · γ1 0
. . .

0 αNr
· ξNr

· γNr


The value of ADOP lies in (0,+∞). A small ADOP

value (near zero) means that the map matching provides
high-confidence positioning information and vice versa. Note
that, one ADOP per class is needed for a set of particles.
Since each particle has diagonal weight matrices wx for
x ∈ {p, v, r, n}, the wx with the greatest 2-norm is defined as
w∗x and substituted into Eq. 7.

While ADOP describes the distribution of key points in
the current LiDAR frame, it does not reflect the underlying
geometry of the environment. For instance, on a highway,
the result of pole-like object matching should have a larger
weight than that of the road mark matching. Although the
road marks might produce a small ADOP value, they are
unable to provide sufficient longitudinal constraint as they are
parallel to the longitudinal direction of the vehicle. Therefore,
we leverage the information entropy to measure the environ-
mental influence on map matching. The information entropy
is computed with:

H = 1 +
1

log10N

N∑
i=1

wi · log10 wi (8)

where N is the number of particles, and wi is the weight of
the i-th particle. The value of H is between 0 and 1. When
H is close to 0, these weights do not carry much information,
and when H is close to 1, these weights are information rich.
Considering the ADOP and information entropy together, the
merging weights are computed by:

G = κ · exp(−H ·ADOP · ρ) (9)

where κ and ρ are correction parameters. The value of G
is also contained between 0 and 1. The merging weights for
poles, vertical planes, road marks and non-semantic landmarks
are denoted by Gp, Gv , Gr and Gn, respectively. The merged
weights are thus defined as:

wi =

∑
x=p,v,r,nGx(κx, ρ) · wx

i∑
x=p,v,r,nGx(κx, ρ)

(10)

The particles will be updated with the merged weights.

IV. EXPERIMENT RESULTS AND DISCUSSIONS

A. Hardware Platform

In accordance to vehicle appearance standards, most car
manufacturers cannot accept a protruding LiDAR installed
on the top of the car. They are more inclined to embed a
LiDAR in the front bumper or behind the windshield. This
installation method significantly limits the LiDAR’s field of
view. Furthermore, the bumper LiDAR is much lower than
the top LiDAR, so its scans are more likely to be occluded by
other vehicles. All of these factors may adversely affect the
accuracy and robustness of the localization algorithm.
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Our platform has a Velodyne HDL-32e LiDAR installed
horizontally on top of the vehicle and a Velodyne VLP-
32c LiDAR embedded in the bumper horizontally (Fig. 7a).
The HDL-32e has 360-degree field of view and is used for
mapping. The point cloud of the VLP-32c is shown in Fig.
7b. Its field of view is slightly greater than 180 degrees, and it
is used for localization. The platform also equips dual antenna
GNSS+INS system with RTK receiver which provides the
ground truth position and orientation. The angular velocity
of z-axis from INS is also used in wheel+IMU odometry. By
integrating the z-axis angular velocity and rear wheel speed,
the relative position in the initial vehicle body-fixed frame can
be obtained. In addition, the computational platform used in
the test is a computer with 8 logical cores Intel Xeon E3-
1505MV5 2.8 GHz CPU.

(a) Installation of LiDARs (b) Field of view

Fig. 7: Vehicle platform

B. Software Architecture

The software was developed based on Robot Operating Sys-
tem (ROS). It includes four ROS nodes, which are wheel+IMU
odometry node, map management node, semantic segmenta-
tion node and particle filter node. The wheel+IMU odometry
node and map management node are very lightweight. Se-
mantic segmentation node receives raw LiDAR point cloud,
and outputs 2D key points with semantic tags. The “untwist”
operation of point cloud is done in this node [38]. Particle
filter node is mainly responsible for map matching (update),
and most of the auxiliary tasks such as status recording and
zero velocity update are also completed by this node.

C. Test routes

The proposed localization algorithm has been tested on two
test routes. The key parameters of these routes are shown in
Table III. Each route was driven twice, one for mapping, the
other for localization. Test route I contains highway and local
roads. It also briefly crossed the office zone. The environment
of test route II is more diverse. The vehicle was mainly driven
on very busy local roads, and it also went into industrial zone,
office zone and business plaza.

The maps of route I and II are shown in Fig. 8.
Fig. 9 shows the variation in landmark frequencies of

different semantic tags along the test route I. We detect pole-
like objects in almost every LiDAR frame, with slightly fewer
on the highway. Observations of vertical plane features are
far less frequent. In some sections of the highway no vertical

TABLE III: Key parameters of test routes

Test route I Test route II
Distance (km) 6.47 15.8
Duration (sec) 996 2331

Average speed (km/h) 23.4 24.4
Num of LiDAR frames 9945 23313
Loaded map size (MB) 3.7 10.2

Note that, Loaded map size denotes the total size of these tiles which are
loaded dynamically during the test. It is not the size of the map database.

Highway

(a) Test route I (b) Test route II

Fig. 8: Maps of test routes

planes are detected. Road marks and non-semantic features can
be found in almost every frame. As expected, the observations
of non-semantic features are more dense. Due to limited space,
the landmark frequencies of test route II is not shown here.
But for route II, we know that the landmark frequencies of the
industrial zone are very similar to that of the local roads, and
in office zone and business plaza more vertical plane features
can be observed. We can concluded that pole-like objects, road
marks and non-semantic objects are all reliable positioning
features, and vertical planes only provide assistance on some
road segments.

D. Road Test Results
Non-semantic localization is used as the baseline method,

in which 500 particles and 300 key points are used. These
key points are the first 300 pixels with the largest vertical
distribution encoding, regardless of their semantic tag. The
baseline method is very similar to the method introduced in
Ref. [2]. In the tests of the proposed method, we always used
500 particles and 300 key points, in which up to 120 can be
semantic key points.

The proposed semantic extraction algorithm has six thresh-
olds. In road testing, two sets of thresholds are used that
represent different pole-like object selection strategies (see
Table IV). In “Sem 1”, wpole equals 0.5. The standard of
pole-like object selection is very strict, hence, the number of
pole-like objects in each frame will be small. The standard of
“Sem 2” is not so strict. Some imperfect poles, such as trees
with a small crown, are used as poles in localization.

We also test three different sets of merge weights which are
shown in Table V.

The semantic extraction thresholds in Table IV and the
merge weights in Table V can create six parameter com-
binations. The localization algorithm runs with these six
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(a) Number of poles (b) Number of vertical planes

(c) Number of road marks (d) Number of non-semantic
landmarks

Fig. 9: Landmark quantities along the route

TABLE IV: Thresholds in semantic extraction

Nmin wpole hpole mplane hplane ρp
Sem 1 10 0.5 1.0 1.0 2.0 0.03
Sem 2 10 1.5 1.0 1.0 2.0 0.03

TABLE V: Merge weights

κp κv κr κn ρ
Weight 1 1 1 1 1 2
Weight 2 1 2 1 1 2
Weight 3 2 1 1 1 2

parameter combinations by using the data sets of test route
I and II. The mean and maximum errors (between LiDAR-
based localization and RTK GPS) are listed in Table VI and
Table VII, respectively. For both test routes, the combination
“Sem 1+Weight 3” achieves the best accuracy. It means that
the strict standard of semantic extraction (“Sem 1”) and the
higher merge weight of the pole-like objects (“Weight 3”)
help to achieve a better localization accuracy. It also can be
found that comparing with the baseline method (non-semantic
localization), the average error of the proposed method has not
decreased much. While, the maximum error is almost reduced
to 50% of the original value. In fact, the particle filter is very
robust. Even in the case of continuous failed map matching,
it will hardly diverge completely. However, the algorithm will

not completely diverge does not mean that the localization
results are always usable. A large positioning error will cause
the failure of other system. Hence, reducing the maximum
error of localization is equivalent to enhancing the robustness
of the system. In other words, compared with increasing
localization accuracy, the proposed semantic-aided localization
method plays a greater role in increasing robustness. Fig.
10 show the longitudinal, lateral and heading error of the
non-semantic localization and semantic-aided localization (test
ID 4 in Table VI). It is clear to see the reduction of the
maximum error. In Table VII, the positioning errors of the
office zone/business plaza and local road/industrial zone are
listed separately. For both non-semantic and semantic-aided
methods, the positioning error in office zone/business plaza is
much smaller than that of the local road/industrial zone, which
is due to the lower speed in the office and business zone (the
“untwist” error is lower) and the well structured environment.

Fig. 10: Longitudinal, lateral and heading error of test route I

Fig. 11 depicts the merging weights Gp, Gv , Gr and Gn of
test route I. The original weights histories are very noisy, so
the trend of the weights in Fig. 11a are computed as a moving
average with a window size of 10 seconds. It is clear that
the non-semantic landmarks dominate the localization on most
road segments. On the highway (from 200 to 500 seconds),
semantic assistance mainly comes from road marks. While on
local roads, semantic assistance information is based mostly
on pole-like objects. Fig. 11b shows a part of the original
weights history on the highway. It is visible that the number of
pole-like objects are very limited, so the associated pole-like
object weight is usually close to zero and increases rapidly
when the vehicle passes by a few poles. This demonstrates
that our combined ADOP plus information entropy merging
technique yields resourceful and effective behaviour based on
available semantic landmarks for positioning.

In Fig. 12a, the longitudinal error is denoted by the radius of
these circles on the test route I. At some locations on highway,
for example at point “A”, the non-semantic localization method
produces spikes in longitudinal error, and semantic-aided
localization method can effectively suppress this error. Fig.
13a shows the point cloud at point “A”. Most of the field of
view is blocked by dynamic objects, and only the highway
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TABLE VI: Positioning Accuracy of test route I

ID Merge weights Highway (mean) Local (mean) Whole test route (mean) Whole test route (max)
lat lon heading lat lon heading lat lon heading lat lon heading

1 Nonsem – 0.151 0.345 0.482 0.236 0.231 0.437 0.198 0.300 0.445 1.983 2.020 3.892
2 Weight 1 0.158 0.251 0.469 0.170 0.223 0.431 0.171 0.241 0.435 1.359 1.617 2.707
3 Sem 1 Weight 2 0.159 0.471 0.492 0.171 0.263 0.446 0.173 0.379 0.453 1.762 2.371 3.655
4 Weight 3 0.139 0.225 0.438 0.158 0.245 0.417 0.151 0.239 0.421 1.083 1.173 2.002
5 Weight 1 0.163 0.271 0.467 0.201 0.243 0.437 0.199 0.248 0.448 1.832 1.759 3.003
6 Sem 2 Weight 2 0.167 0.481 0.481 0.212 0.281 0.472 0.195 0.354 0.478 1.855 2.586 3.282
7 Weight 3 0.148 0.285 0.446 0.187 0.257 0.436 0.182 0.246 0.442 1.637 1.995 2.896

TABLE VII: Positioning Accuracy of test route II

ID Merge weights Office/Business (mean) Local/Industrial (mean) Whole test route (mean) Whole test route (max)
lat lon heading lat lon heading lat lon heading lat lon heading

1 Nonsem – 0.127 0.180 0.317 0.242 0.246 0.428 0.235 0.238 0.421 2.351 2.751 3.518
2 Weight 1 0.121 0.174 0.293 0.178 0.235 0.442 0.176 0.233 0.439 1.422 1.693 2.907
3 Sem 1 Weight 2 0.127 0.224 0.315 0.181 0.264 0.451 0.179 0.258 0.448 1.974 2.511 3.480
4 Weight 3 0.089 0.123 0.276 0.155 0.251 0.433 0.147 0.236 0.417 1.223 1.324 2.253
5 Weight 1 0.147 0.201 0.305 0.190 0.229 0.439 0.178 0.217 0.431 1.962 1.873 3.283
6 Sem 2 Weight 2 0.157 0.233 0.337 0.224 0.273 0.455 0.221 0.269 0.453 1.993 2.480 3.437
7 Weight 3 0.139 0.217 0.312 0.205 0.246 0.417 0.199 0.243 0.411 1.781 2.105 3.021

Time (sec)
(a) Moving average of weights

Time (sec)
(b) Local history of weights

Fig. 11: Time history of weights (test route I)

fence on the left and two pole-like objects on the right can be
used as stable landmarks. Since the highway barrier and one of
the pole-like objects are much lower than the vehicle on the
right, and the non-semantic localization method is inclined
to select tall objects as landmarks, it ignores these stable
features. Semantic-aided localization solves these situations
with ease - when the LiDAR is blocked by dynamic objects,
the longitudinal error does not increase significantly.

Fig. 12b shows the lateral errors on the route. The non-
semantic localization method produces large lateral errors at
open intersections (see point “B”). This is in part attributed
to using a front bumper LiDAR. As shown in Fig. 13b, the

generated point cloud at point “B” only captures the large
open intersection and does not see the narrow road behind the
vehicle. In this case, the environment does not provide enough
lateral constraint. The semantic-aided method can reduce this
error remarkably with semantic landmark constraints, but the
lateral error at large intersections is still slightly greater than
at other road segments.

(a) Longitudinal error (b) Lateral error

Fig. 12: Localization error shown on trajectory. Curve indi-
cates the localization error. Red: Non-semantic method; Blue:
Semantic-aided method

E. Computation time

Table VIII and IX show the computation time of each
ROS nodes (to deal with one frame of LiDAR point cloud)
in non-semantic and semantic-aided localization methods,
respectively. The map management node checks the current
position of the vehicle every 0.5 second, so most of the
time its CPU usage is zero. The segmentation node of the
semantic-aided method needs more CPU resource than the
feature extraction node of the non-semantic method becasue it
contains the region growing clustering algorithm. The particle
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(a) Point cloud blocked by dy-
namic objects

(b) Point cloud at intersection

Fig. 13: Point cloud of the bumper LiDAR

filter node also consumes 5.9 ms more CPU time in the
semantic-aided method because of the more complex map
matching and weights merging computation.

TABLE VIII: Computation time of each ROS node (Non-
semantic localization)

Node avg time min time max time
Map management node 4.8 ms 0 ms 24 ms

Odometry node 3.6 ms 2 ms 5 ms
Feature extraction node 19.6 ms 12 ms 27 ms

Particle filter node 22.8 ms 7 ms 31 ms
Total 50.8 ms 21 ms 87 ms

TABLE IX: Computation time of each ROS node (Semantic-
aided localization)

Node avg time min time max time
Map management node 5.1 ms 0 ms 27 ms

Odometry node 3.5 ms 2 ms 5 ms
Segmentation node 42.3 ms 17 ms 46 ms
Particle filter node 28.7 ms 9 ms 37 ms

Total 79.6 ms 28 ms 115 ms

The average CPU time of the proposed method is 79.6 ms
(using one of the 8 logical cores). For a 10 Hz LiDAR, the
average CPU usage is 9.95%. The maximum processing time is
115 ms, which exceeds the time interval between two LiDAR
frames. While, only the operations of the segmentation node
and particle filter node are sequential, which take 83 ms in
total. Other ROS nodes are running in parallel on other logical
cores. So whole system can still run in real time .

V. CONCLUSIONS

This paper develops an algorithm to locate an autonomous
vehicle with a 3D spinning LiDAR sensor. By exploiting
the geometric properties of a point cloud with robust rule-
based scan principles, three classes of semantic landmarks
are extracted from the raw LiDAR point cloud in real-time
and are used to improve the accuracy of the traditional non-
semantic localization method. Augmented dilution of precision
and information entropy are used to quantify the credibility of
map matching results from different landmark types. The final
localization result is obtained by a weighted average of the
three semantic and one non-semantic localization results. In
road testing, a front bumper LiDAR with an approximate 180

degrees field of view is used to simulate the sensor installment
on production vehicles. The results demonstrate that our
semantic-aided localization method can substantially reduce
longitudinal error, particularly at its maxima. The proposed
method also reduces the large lateral error experienced at
open intersections, which is a prominent disadvantage of front
bumper LiDAR localization. All the while, the efficient design
of our system consumes no more than 10% computational
power of a desktop CPU.
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[9] M. Schreiber, C. Knöppel, and U. Franke, “Laneloc: Lane marking
based localization using highly accurate maps,” in 2013 IEEE Intelligent
Vehicles Symposium (IV), 2013, pp. 449–454.

[10] G. I. J. J. H. Im, S. H. Im, “Extended line map-based precise vehicle
localization using 3d lidar,” Sensors, vol. 18, p. 3179, 2018.

[11] A. Y. Hata, F. S. Osorio, and D. F. Wolf, “Robust curb detection and
vehicle localization in urban environments,” in 2014 IEEE Intelligent
Vehicles Symposium Proceedings, 2014, pp. 1257–1262.

[12] Y. Zhang, J. Wang, X. Wang, C. Li, and L. Wang, “A real-time curb
detection and tracking method for ugvs by using a 3d-lidar sensor,” in
2015 IEEE Conference on Control Applications (CCA), 2015, pp. 1020–
1025.

[13] G. I. J. J. H. Im, S. H. Im, “Vertical corner feature based precise vehicle
localization using 3d lidar in urban area,” Sensors, vol. 16, no. 8, p. 1268,
2016.

[14] N. Brasch, A. Bozic, J. Lallemand, and F. Tombari, “Semantic monocu-
lar slam for highly dynamic environments,” in 2018 IEEE/RSJ Interna-
tional Conference on Intelligent Robots and Systems (IROS), 2018, pp.
393–400.

[15] K. Tateno, F. Tombari, I. Laina, and N. Navab, “Cnn-slam: Real-time
dense monocular slam with learned depth prediction,” in Proceedings
of the IEEE Conference on Computer Vision and Pattern Recognition
(CVPR), July 2017.

[16] S. L. Bowman, N. Atanasov, K. Daniilidis, and G. J. Pappas, “Proba-
bilistic data association for semantic slam,” in 2017 IEEE International
Conference on Robotics and Automation (ICRA), 2017, pp. 1722–1729.

[17] V. Vineet, O. Miksik, M. Lidegaard, M. Niener, S. Golodetz, V. A.
Prisacariu, O. Khler, D. W. Murray, S. Izadi, P. Prez, and P. H. S. Torr,
“Incremental dense semantic stereo fusion for large-scale semantic scene
reconstruction,” in 2015 IEEE International Conference on Robotics and
Automation (ICRA), 2015, pp. 75–82.

Authorized licensed use limited to: Stanford University. Downloaded on July 28,2021 at 00:02:26 UTC from IEEE Xplore.  Restrictions apply. 



2379-8858 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TIV.2021.3099022, IEEE
Transactions on Intelligent Vehicles

IEEE TRANSACTIONS ON INTELLIGENT VEHICLES, VOL. 14, NO. 8, AUGUST 2020 11

[18] S. Yang, Y. Huang, and S. Scherer, “Semantic 3d occupancy mapping
through efficient high order crfs,” in 2017 IEEE/RSJ International
Conference on Intelligent Robots and Systems (IROS), 2017, pp. 590–
597.

[19] P. Li, T. Qin, and a. Shen, “Stereo vision-based semantic 3d object
and ego-motion tracking for autonomous driving,” in Proceedings of the
European Conference on Computer Vision (ECCV), September 2018.

[20] K.-N. Lianos, J. L. Schonberger, M. Pollefeys, and T. Sattler, “Vso:
Visual semantic odometry,” in Proceedings of the European Conference
on Computer Vision (ECCV), September 2018.

[21] B. Bescos, J. M. Fcil, J. Civera, and J. Neira, “Dynaslam: Tracking,
mapping, and inpainting in dynamic scenes,” IEEE Robotics and Au-
tomation Letters, vol. 3, no. 4, pp. 4076–4083, 2018.

[22] J. Mccormac, R. Clark, M. Bloesch, A. Davison, and S. Leutenegger,
“Fusion++: Volumetric object-level slam,” in 2018 International Con-
ference on 3D Vision (3DV), 2018, pp. 32–41.

[23] J. McCormac, A. Handa, A. Davison, and S. Leutenegger, “Semanticfu-
sion: Dense 3d semantic mapping with convolutional neural networks,”
in 2017 IEEE International Conference on Robotics and Automation
(ICRA), 2017, pp. 4628–4635.

[24] M. Runz, M. Buffier, and L. Agapito, “Maskfusion: Real-time recog-
nition, tracking and reconstruction of multiple moving objects,” in
2018 IEEE International Symposium on Mixed and Augmented Reality
(ISMAR), 2018, pp. 10–20.

[25] C. Yu, Z. Liu, X. Liu, F. Xie, Y. Yang, Q. Wei, and Q. Fei, “Ds-
slam: A semantic visual slam towards dynamic environments,” in 2018
IEEE/RSJ International Conference on Intelligent Robots and Systems
(IROS), 2018, pp. 1168–1174.

[26] J. Yan, D. Chen, H. Myeong, T. Shiratori, and Y. Ma, “Automatic
extraction of moving objects from image and lidar sequences,” in 2014
2nd International Conference on 3D Vision, vol. 1, 2014, pp. 673–680.

[27] J. Wang and J. Kim, “Semantic segmentation of urban scenes with
a location prior map using lidar measurements,” in 2017 IEEE/RSJ
International Conference on Intelligent Robots and Systems (IROS),
2017, pp. 661–666.

[28] J. Jeong, T. S. Yoon, and J. B. Park, “Multimodal sensor-based
semantic 3d mapping for a large-scale environment,” Expert Systems
with Applications, vol. 105, pp. 1 – 10, 2018. [Online]. Available:
http://www.sciencedirect.com/science/article/pii/S0957417418302082

[29] J. Jeong, T. S. Yoon, and J. B. Park, “Towards a meaningful 3d map
using a 3d lidar and a camera,” Sensors, vol. 18, p. 2571, 2018.
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