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Abstract—Robots that autonomously navigate real-world 3D
cluttered environments need to safely traverse terrain with abrupt
changes in surface normals and elevations. In this letter, we present
the development of a novel sim-to-real pipeline for a mobile robot
to effectively learn how to navigate real-world 3D rough terrain
environments. The pipeline uses a deep reinforcement learning ar-
chitecture to learn a navigation policy from training data obtained
from the simulated environment and a unique combination of
strategies to directly address the reality gap for such environments.
Experiments in the real-world 3D cluttered environment verified
that the robot successfully performed point-to-point navigation
from arbitrary start and goal locations while traversing rough
terrain. A comparison study between our DRL method, classi-
cal, and deep learning-based approaches showed that our method
performed better in terms of success rate, and cumulative travel
distance and time in a 3D rough terrain environment.

Index Terms—Autonomous agents, deep learning for robotics
and automation, search and rescue robots.

I. INTRODUCTION

MOBILE robots need to autonomously traverse and navi-
gate real-world 3D cluttered rough terrain in numerous

applications including urban search and rescue [1]–[3], haz-
ardous material clean-up [4], and mining and construction [5].
Traversability of such terrain can be complex due to the existence
of uneven ground, ramps, steps, and rocks consisting of varying
shapes and sizes. To successfully navigate such terrain, a robot
must be able to find traversable paths within the environment to
reach different goal locations.

To date, the most common approaches used for navigat-
ing rough terrain have focused on either representing ter-
rain traversability by using handcrafted heuristics [6]–[10] or
learning-based models [5], [11]–[13]. In general, these methods
are optimized for terrain traversability by solely considering
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terrain features selected by experts. They do not consider a
robot’s intended actions and states in the environment, such as
wheel positioning and angle of approach. Furthermore, these
approaches represent terrain traversability as a categorical label
or a scalar value. These simplifications can result in the loss of
critical information for more challenging 3D terrain with abrupt
changes in elevation and surface normals, where such robot and
environment interactions can directly influence a robot’s ability
to successfully navigate through the rough terrain.

In our own previous work in [14], we introduced a deep
reinforcement learning (DRL) approach for robots to learn how
to traverse unknown rough terrain by explicitly considering a
robot’s pose in the environment along with 3D terrain informa-
tion. However, similar to [15], [16], both training and testing
were in simulated 3D environments.

Sim-to-real is an emerging research area that studies how
to overcome the discrepancies between the simulated and real-
world environments, known as the reality gap, as a result of fac-
tors such as sensory noise, lighting conditions, and unmodeled
dynamics [17]. Sim-to-real has been used in a number of robotic
applications including aerial vehicles [18], manipulators [19],
and mobile robots [20]–[22]. For mobile robot navigation, the
environments considered so far have been in buildings including
hallways and offices, where the ground has always been flat. To
the authors’ knowledge, sim-to-real approaches have not yet
been considered for robot navigation in 3D rough terrain envi-
ronments, which has the added challenge of climbable terrain
with varying shapes, sizes, and steepness. This can introduce
additional simulation-reality discrepancies with respect to the
modeling of the 3D terrain and a robot’s direct interactions with
the environment.

In this letter, we propose a novel sim-to-real pipeline and
unique strategies to address the challenge of robot navigation
in 3D cluttered real environments. Our main contributions are:
1) we are the first to present a sim-to-real approach and overall
pipeline for autonomous navigation in cluttered 3D terrain, 2) we
introduce strategies specific to 3D cluttered terrain to overcome
the reality gap by uniquely considering robot and environment
interactions when using DRL-based robot navigation in such
3D environments, 3) we successfully train our DRL policies
in simulation and transfer them to a physical mobile robot
which is able to traverse real-world rough terrain without further
adaptation, and 4) we present a comparison study which high-
lights the superior performance of our navigation method with
these strategies over standard classical and deep learning-based
techniques in cluttered environments.
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II. RELATED WORKS

Existing navigation methods that have been used for robots
traversing rough terrain can be classified as: 1) classical ap-
proaches, 2) learning-based techniques, and 3) sim-to-real tech-
niques used to transfer learned navigation behaviors from sim-
ulations to real-world environments.

A. Classical Approaches for Rough Terrain Environments

In general, classical navigation approaches for robots in rough
terrain environments have utilized a combination of a terrain
traversability classifier and a path planner. In [23], an extensive
survey on classical terrain assessment approaches was presented.
The most common approach utilizes geometric information
with statistical processing techniques to extract traversability
features [7]–[10]. In particular, statistical values such as terrain
roughness, plane slope, and height were extracted from 3D point
clouds to determine a traversability assessment measure based
on heuristics, or a scalar cost. These measures were used in
conjunction with 1) rapidly exploring random trees, 2) D∗-Lite,
or 3) probabilistic roadmap method for navigation.

Classical approaches utilized either heuristic rules or cost
functions that were manually designed and tuned for traversabil-
ity assessment. Such manual design can be time consuming,
requires expert knowledge, and is difficult to transfer to other
robots, since the design is specific to a robot’s physical character-
istics. Moreover, these approaches classify terrain into either a
binary [7], [8], [10], or a scalar [9] measure. This simplification
can result in the loss of critical information for representing
traversability (e.g., robot’s relative pose, angle of approach to
the terrain, and previous navigation actions). As a result, these
methods are not able to generalize well to varying real-world
cluttered terrain.

B. Learning Approaches for Rough Terrain Navigation

Learning based techniques have also been used to determine
traversability in rough terrain environments, e.g., [5], [11]–
[13]. For example, in [5], a traversability cost function was
learned from a manually-labeled cost map and human navi-
gation demonstrations. In [11], a support vector machine was
retrained online for binary ground classification in outdoor forest
terrain using texture and color features from 3D point clouds. In
[12], [13], a deep learning based approach used convolutional
neural networks (CNNs) to classify terrain to produce binary
traversability measures. Compared to the classical approaches,
the learning-based terrain traversability classification methods
can be applied to real-world terrain while avoiding the need
for manually designed and tuned rules. However, many of these
methods require a large amount of manually labeled data. Unfor-
tunately, they also simplify traversability into discrete classes or
numerical values, resulting in the potential loss of information.

End-to-end DRL approaches were presented in [14]–[16] to
directly map sensory modalities to robot motion commands
without simplifying the terrain traversability representation. In
[15], zero to local-range sensing was used within a rainbow DRL
architecture. In [16], 2D laser scans, RGB images, and 3D point
cloud were fused using a three-branch network architecture.
However, both training and testing were only conducted in 3D
cluttered simulated environments, therefore these works do not
address the reality gap.

Fig. 1. Proposed sim-to-real pipeline for rough terrain robot navigation.

C. Sim-To-Real Strategies for Robot Navigation

Sim-to-real strategies have been developed for robot nav-
igation tasks [18], [20]–[22]. For example, in [18], domain
randomization was applied to visual parameters such as texture,
lighting, and furniture placement of a set of synthetic hallway
environments during training for learning collision-avoidance
actions for a quadcopter.

LiDAR distance measurements or semantic features extracted
from RGB images were used as inputs to learn robot veloc-
ity or navigation commands using Asynchronous Deep De-
terministic Policy Gradient network [20], Probabilistic Road
Map–Reinforcement Learning [21], or Asynchronous Advan-
tage Actor-Critic (A3C) network [22].

The aforementioned learning-based navigation approaches
demonstrate the feasibility of using DRL to learn 2D navigation
behaviors in structured environments (e.g., hallways and offices)
and using sim-to-real strategies to transfer the learned policy
to real-world environments. In this letter, we propose a novel
pipeline that utilizes a unique combination of sim-to-real strate-
gies for a mobile robot to navigate real-world 3D cluttered rough
terrain environments autonomously. To the authors’ knowledge,
we are the first to consider 3D rough terrain environments in
sim-to-real applications. We have developed new sim-to-real
strategies to directly address the reality gap for such 3D envi-
ronments. Using this novel sim-to-real pipeline, we extend our
A3C DRL-based rough terrain navigation method developed in
[14] so that it can be directly applied to real-world 3D cluttered
environments.

III. METHODOLOGY

Our proposed sim-to-real architecture for robot navigation in
3D cluttered rough terrain is presented in Fig. 1. Using RGB-D,
3D LiDAR, and IMU information as Perception inputs, a 3D
point cloud map of the real environment is first generated by
the 3D Mapping module. This map is then reconstructed into
a 3D mesh by the 3D Meshing module to represent the surface
geometry of the terrain. The simulated environment provides the
simulated robot sensory data that is used as input to the Deep
Reinforcement Learning (DRL) module.
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The DRL model uses an elevation map, which provides a
2D representation of the surrounding terrain, and the robot’s
pose as inputs. The DRL module then learns a policy for the
robot to navigate the environment. For real-world deployment,
the Perception inputs are used in the Robot Pose Estimation
module to determine the robot’s 6 degrees-of-freedom (DOF)
pose within the real world. The robot’s pose and LiDAR in-
formation are then used by the Elevation Mapping module to
generate the real-time elevation map. Similar to the Simulated
Environment used for training, the pose and elevation map are
used as inputs to the DRL module. Based on the trained policy,
the DRL module determines the desired robot actions, which are
then sent to the robot’s Closed-Loop Controller to be executed as
motion commands for the robot’s Actuators. The main modules
of the pipeline are discussed in details below.

A. 3D Mapping & 3D Meshing

A 3D map of the real environment is created using the RGBD-
SLAMv2 method [24] within the Real-Time Appearance-Based
Mapping (RTAB-MAP) package in ROS [25]. It uses simultane-
ous localization and mapping (SLAM) to construct and update a
3D point cloud map of the environment using information from
an RGB-D sensor with an onboard IMU [25]. This 3D map is
reconstructed into a 3D continuous mesh surface using a Poisson
surface reconstruction approach [25]. Meshlab [26] is also used
to fill any holes in the mesh and filter out any floating surfaces.
The mesh provides a continuous surface for a robot to interact
with in the Simulated Environment.

B. Observation Space

The observation space represents the inputs to the DRL in both
the Simulated Environment and the Real-World Environment. It
consists of the elevation map from the Elevation Mapping mod-
ule, the robot’s distance dt to the goal location, and the robot’s
orientation (αt, βt, γt), where the robot heading, γt, is relative
to the target goal location on the terrain. dt and (αt, βt, γt) are
determined by the pose provided by the Robot Pose Estimation
module. The elevation map, and the robot’s orientation towards
and distance to the goal location are domain invariant and do
not include raw sensory data. This data representation prevents
the DRL model from overfitting to features that are only present
in the Simulated Environment, namely, color, texture, lighting
conditions, and sensor noise patterns [17].

1) Elevation Mapping: An elevation map centered around the
robot is generated using the ROS Elevation Mapping package
[27]. The map consists of a 5m by 5m 2D grid, where each grid
cell represents the average height of a squared area.

2) Robot Pose Estimation: In the Simulated Environment, the
robot’s pose is directly obtained from the ROS Gazebo simulator
[28] which uses a transform tree structure to maintain the spatial
relationship between objects and coordinate frames. For real-
world deployment, RGB-D images, IMU, and the 3D map of
the environment are used to estimate the robot pose pt using
RGBDSLAMv2 [24].

C. Simulated Environment

We developed a 3D simulated environment in Gazebo using
the 3D mesh of the real environment. We used the 3D physics
model for the wheeled mobile platform developed in [14] to
represent the real robot. The cluttered real-world 3D terrain
consists of a combination of changes in elevation including

ramps and steps, sharp corners, and climbable and unclimbable
obstacles of different shapes and sizes.

D. DRL Module

The DRL module uses the A3C DRL method [29] to learn the
policy and the state-value function for rough terrain navigation
to determine the optimal robot navigation action under a given
reward. At each discrete time step t, the robot in state st executes
a navigation action at according to the policy π(at|st; θ). This
action transitions the robot to state s′t to maximize expected
future rewards. The policy π(at|st; θ) is determined by a neural
network parameterized with weights θ. The navigation actions
consist of the robot moving forward or backward for a travel
distance L, or turning right or left for a yaw rotation angle θγ .
A state-value function V (st; θv), which is the expected future
cumulative reward starting from state st is estimated by a state-
value network parameterized with weights θv to help update the
policy [30]. Rewards are used to compute the gradients with
respect to θ and θv at every step. Stochastic gradient descent
(SGD) is used to update the θ and θv as follows [29], [31]:

Δθ = ∇θ log π (at|st; θ)A (st, at; θv) + ζ∇θH (π (st; θ)) ,
(1)

Δθv = A (st, at; θv)∇θvV (st; θv) , (2)

where,

A (st, at; θv) =

n−1∑
i=0

Γirt+i + ΓnV (st+n; θv) − V (st; θv) ,

(3)
and where A(st, at; θv) is the advantage function and Γ is
the discount factor. n is the number of steps to the end of a
training episode. H is the entropy term to encourage the robot
to explore different navigation actions, and the hyperparameter
ζ determines the strength of H .

Our developed A3C structure is presented in Fig. 2. A long
short-term memory (LSTM) recurrent layer [32] is used to
capture information from previous robot states. The output of
the network consists of both the navigation policy π(at|st; θ)
and the state-value function V (st; θv).

Rewards: Positive rewards are given to encourage the fol-
lowing actions: 1) move closer to the goal location, 2) explore
surrounding terrain for alternative routes to the goal, when an
existing route is not traversable, and 3) reach the state sgoal
by arriving at the navigation goal within a certain distance
tolerance dg. Negative rewards are given to discourage the robot
from reaching an undesirable terminal state sfail. Undesirable
terminal states include the robot getting stuck on obstacles,
flipping over, and/or reaching a time-out limit.

After executing a navigation action at time step t, the robot
receives a reward rt determined as follows:

rt =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

−μ1Δdmin, t, Δdmin,t < 0
μ2Δaexpl, t, Δaexpl, t > 0

1, sgoal
−0.5, sfail
0, elsewhere

, (4)

where distance dmin,t is the closest distance that the robot
has navigated to with respect to the target goal location up
to the current time step t. aexpl, t is the explored area of the
environment at time step t. To keep track of the explored area, the
robot maintains a 2D binary grid map where each cell represents
a 5m× 5m square area with values that represent whether the
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Fig. 2. Neural network structure with CNN hidden layer configuration details. CONV represents a convolutional layer with filter size F, stride S, and padding P.
FCL represents a fully connected layer.

robot has visited the cell. All grid cell values initiate with 0, rep-
resenting unexplored cells. Cells that are explored have a value
of 1. Δdmin,t and Δaexpl, t represent the changes in dmin,t and
aexpl, t, with respect to the previous time step, t− 1. μ1 = 0.2
andμ2 = 0.005 are two hyperparameters that adjust the strength
of rewards related to Δdmin,t and Δaexpl,t, such that the robot
learns to navigate to the goal location safely and efficiently.
We empirically determined that μ1 should be between 0.1-0.3,
and μ2 should be between 0.001-0.01. Empirical analysis found
that if μ1 is too high (above the range), the robot learns to
move aggressively towards the goal location without considering
obstacle-free routes. Ifu2 is too high (above the range), the robot
first tries to unnecessarily explore the full environment before
heading towards the goal location. On the other hand, if μ1 and
μ2 are too low (below these ranges), the robot does not receive
enough rewards for training.

1) Closing the Reality Gap: To address the reality gap [17],
we uniquely incorporate three sim-to-real strategies during train-
ing. The first two strategies were developed to address challenges
that are unique to 3D terrain navigation, while the third focuses
on robot pose estimation errors.

a) Varying Terrain Steepness: The accumulation of depth
camera measurement errors from 3D Mapping can result in the
height of the 3D mesh deviating from its real-world counterpart.
Consequently, the steepness and the traversability of the simu-
lated terrain may not reflect the real-world accurately. Therefore,
robots trained in the simulated terrain may execute inappropriate
navigation actions in the real-world such as attempting to climb
steep slopes or not following traversable paths. To alleviate this
issue, we vary terrain steepness by scaling the mesh heighth by a
uniform distributionUh(elh, euh)with lower bound elh and up-
per bound euh . Uniform distribution is used to expose the CNN
to a broad distribution of randomized parameters to increase
the likelihood of the real-world values being present during
training, as the terrain steepness measurement error cannot be
accurately modeled. This allows the CNN to cover a wide range
of variations during training in order for it to be generalizable
to the real-world, as the real-world may appear to the model
as such a variation [17], [18]. This new height of the mesh is
represented as:

h ∼= hoUh (elh, euh) , (5)

where ho is the original height of the mesh obtained from 3D
Meshing. If the height of the terrain is scaled by a factor larger
than one, the steepness across the terrain is increased, while a
smaller number decreases the steepness.

b) Robot Motion Disturbance: When a robot navigates
over rough terrain, its interactions with the environment may not
result in the intended actions. For example, slippage could occur
when climbing an obstacle or rotating without sufficient traction.

To improve the robustness of our DRL navigation system to such
interactions with the environment, movement disturbances are
applied to both the robot’s travel distance L and yaw rotation
angle θγ . These movement disturbances are represented by
uniform distributions UL(elL, euL) and Uθγ (elθγ , euθγ ), where
elL and elθγ are the lower bounds and euL and euθγ are the upper
bounds, respectively.

In addition to disturbances from 3D terrain interactions, robot
movements are also affected by the network latency and the
latency due to obtaining measurements from visual odome-
try when executing control commands. These disturbances are
also represented as uniform distributions, U ′

L(e
′
lL, e

′
uL) and

U ′
θγ
(e′lθγ , e

′
uθγ

), with e′lL and e′lθγ as lower bounds and e′uL
and e′uθγ as upper bounds.

The main difference between these two types of disturbances
is that the interaction disturbances happen at random instances
during rough terrain navigation, and the latency disturbances
occur at every time step. Therefore, the robot’s motion during
training is represented as:

L = L± IUL (elL, euL) + U ′
L (e′lL, e

′
uL) , (6)

θγ = θγ + IUθγ

(
elθγ , euθγ

)
+ U ′

θγ

(
e′lθγ , e

′
uθγ

)
, (7)

where I follows a Bernoulli distribution, I ∼ Bern(P ), to
represent that movement disturbance from 3D terrain interac-
tions can happen at random instances. P is the probability of
successfully applying this disturbance.

c) Robot Pose Estimation Error: Robot pose errors exist
due to occurrences of both image errors and feature association
errors. The former are a result of lens distortion effects and biases
in the image rectification process, while the latter is a result of the
inclusion of ambiguous and spurious features [33]. Inaccurate
association of visual features for localization can result in the
estimated robot 6 DOF pose pt (xt, yt, zt, αt, βt, γt) deviating
from the true values [33]. These errors are reflected in the inputs
to the DRL network, as (αt, βt, γt) and dt are obtained directly
from pt and the elevation map uses pt. To ensure the robustness
of our DRL navigation to real-world pose estimation errors,
we represent pose errors by adding a Gaussian distribution
Np(0, σp) with standard deviation σp to the robot’s pose in
simulation:

pt = po +Np (0, σp) , (8)

where po is the current 6 DOF robot pose.
2) Training: The training was conducted by randomly gen-

erating different robot starting locations and headings, and goal
locations within the simulated environment. Nine agent threads
were simultaneously used to run nine independent simulations.
A robot executed a series of navigation actions in each of the
simulation environments based on the latest policy determined
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Fig. 3. Cumulative reward per episode averaged per 2000 episodes.

by the A3C network and received rewards to update the weights
of the A3C network.

The general parameter values used in training are as
follows: L = 10 cm; θγ = 15◦; ζ = 0.01; Γ = 0.99;
dg = 0.3 m; μ1 = 0.2; μ2 = 0.005; and tmax = 5. The
learning rate was set to 0.0001 [31]. The parameter values
utilized in the three sim-to-real strategies are detailed below:

a) Terrain Steepness Parameter: A ±5% scaling was
added to the mesh height, i.e., elh = 95% and euh = 105%.
This scaling was determined based on the translational errors
obtained along the height direction of the environment in RTAB-
Map [25].

b) Robot Motion Disturbance Parameters: elL = 20 cm,
euL = 40 cm, elθγ = −45◦, euθγ = 45◦ and P = 0.017
were used to apply a large enough disturbance to knock the
robot off its original trajectory at expected intervals of 60 time
steps based on P . elL and euL were chosen based on 50%
and 100% of the robot length. e′lL = 0 cm, e′uL = 3 cm,
e′lθγ = 0◦ and e′uθγ = 3◦ were used to model movement errors
caused by latency. They were measured on the physical robot
in an arbitrary environment. The deviations of the actual travel
distance L and yaw rotation angle θγ from the desired values
after the robot finished executing an action were obtained using
visual odometry [25].

c) Robot Pose Estimation Errors: : We used σp =
6 cm and σp = 5◦. These error values were selected based on
the translation and orientation errors that can be expected when
mapping similar-sized environments using Visual SLAM [24],
[25].

An AMD Threadripper 2990wx CPU was used to train the
DRL network. The total training time was about 16.4 days. Fig. 3
presents the cumulative rewards per episode averaged across
2000 episodes. As can be seen by the figure, the A3C network
started to converge after 200,000 episodes for an average cumu-
lative reward of 7.5.

E. Closed-Loop-Controller

A two-layer closed-loop controller has been designed con-
sisting of a bang-bang controller [34] for position control using
visual odometry, and a proportional controller [35] to control
the wheel-spin rate using wheel encoders. This two-layer system
compensates for wheel slippage caused by terrain surface rough-
ness. The bang-bang controller outputs a constant linear and
angular robot velocity until the robot has traveled a distance L
and rotated by yaw angle θγ . The linear and angular velocities are
converted into individual wheel spin rates using the kinematic
model of skid steering robots [36]. The spin rates are then sent

Fig. 4. The Jaguar robot sends pose estimation and elevation map data to the
server and receives navigation action commands over Wi-Fi.

to the proportional controller for each wheel to track the setpoint
spin rate.

F. Real-World Environment

The learned navigation policy is transferred to the Real-World
Environment from the DRL module into a wheeled robot without
requiring any training in the real-world.

IV. EXPERIMENTS

The experiments consist of: 1) physical robot experiments
in the real-world environment to determine the success rate of
reaching goal locations autonomously, 2) a comparison study of
our proposed DRL method for 3D rough terrain with respect to
both a classical navigation approach and a learning-based terrain
traversability classification method, and 3) a sensitivity analysis
on the effect of the sim-to-real strategies.

A. Real-World-Experiments

1) Mobile Robot: The Jaguar 4x4 skid-steered mobile robot
is equipped with a Velodyne VLP-16 3D LiDAR, and a Stereo
Labs ZED Mini sensor containing a stereo camera and IMU,
Fig. 4. The robot has two computing units. The primary unit is an
Intel Mini PC (NUC) with a Core i5 CPU and the secondary unit
is an Nvidia Jetson TX2 mobile GPU. The Jetson TX2 mobile
GPU is used to obtain RGB images and IMU data collected from
the ZED Mini sensor for obtaining robot poses. The NUC uses
these poses, the 3D LiDAR point clouds, and encoder data to
obtain an elevation map and execute robot navigation actions
via the Closed-Loop Controller module. A server equipped with
an Intel i7-7700K CPU runs the DRL module which generates
the navigation action commands sent to the NUC, using the
elevation maps and robot poses.

2) Cluttered 3D Environment: We developed a 36m2 clut-
tered rough terrain environment in our lab with multiple levels
and ramps made from wooden pallets, with scattered objects
such as pylons, boxes, and rocks, Fig. 5(a). The environment
was divided into 22 separate regions with different types of tran-
sitions between neighboring regions. These transitions included
full steps, half steps, and ramps, Fig. 5(b) and (c). Full steps had a
height of 0.13m. A half step had a height between 0.05 to 0.08m.
The slopes and lengths of the ramps ranged between 20°-40°
and 0.3-0.9m, respectively. The traversability of the terrain was
dependent on the robot’s current position and angle of approach,
as well as its intended action.

3) Procedure: For each experiment, random start and goal
locations were selected for the robot to traverse. Each trial was
considered successful only if the robot navigated autonomously
to the goal, within a position tolerance of 0.3m and a timeframe
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Fig. 5. Real-world environment with: (a) its different regions (1 to 22) and
transitions between regions labeled; zoomed in views on two pallets stacked
with (b) full and half steps, and (c) wooden obstacles on a ramp.

Fig. 6. Top view of experiment environment with trajectories from 20 start
and goal locations represented by color-unique lines.

TABLE I
SUCCESS RATES OF ALL TRIALS IN THE REAL ENVIRONMENT

of 10 minutes. Twenty combinations of start and goal locations
were randomly chosen across the environment, and repeated
three times, for a total of 60 trials. The trajectories for these
location pairs are shown in Fig. 6.

4) Results: The success rate for all 20 location pairs is pre-
sented in Table I, where the percentage is the average across three
trials per test (60 trials in total). Overall, the robot achieved a
success rate of 86.67% in the environment. In general, the robot
was able to traverse the multi-leveled cluttered scene using what

Fig. 7. (a) 3D map of the environment with 3 different trajectories shown; Test
10 real trajectory (yellow), Test 20 real trajectory (orange), Test 20 simulated
trajectory (purple). A, B and C are the zoomed in views in (b)-(d).

it had learned during training. Some of the navigation strategies
learned include making use of adjacent half steps to climb full
steps with better success and keeping a minimum distance from
walls to avoid collisions, even at the cost of having to travel on
uneven climbable portions of the terrain. When becoming stuck
in a portion of the environment, the robot would also learn to try
a different heading direction. A video of our robot navigating
rough terrain in simulation and in the real-world with the trained
policy is presented at https://youtu.be/dtYlNWvK-7k.

A successful trial in the cluttered environment is shown in Test
10 as presented in Fig. 7(a) in yellow. While navigating from the
start location in region 10 to the goal location in region 9, the
robot was able to: 1) climb a ramp while avoiding an obstacle
on it (Fig. 7(b)), 2) use an adjacent ramp to aid in climbing over
a full step (Fig. 7(c)), and 3) descend a ramp without falling
(Fig. 7(d)). In Tests 3, 5 and 7, the robot successfully navigated
to the goal in some but not all trials. Unsuccessful trials in these
tests were due to repeated vibrations along trajectories with
sudden drops and bumps between the wheels and the pallets
which led to variability in robot decisions. Another reason was
due to the deviation between the simulated and real-world maps
caused by limited resolution from both the RTAB-Map and the
3D mesh. This deviation caused certain gaps to appear smaller
in simulation which led the DRL algorithm to learn incorrect
traversability. In Test 20, the simulated robot trajectory (purple)
was able to reach the goal; however, the robot failed to complete
this path during the real experiment (orange) because the angle
of approach caused the ramp to be unclimbable in the real world.
This ultimately stopped the robot at the terminal pose seen in
Fig. 7(a) after it timed out.

We also implemented the 20 pairs of locations in the simulated
environment and compared the total average success rates. The
simulation and real-world experiments had a success rate of
90.0% and 86.67%, respectively.

B. Comparison Study

We conducted a comparison study between our DRL method,
a classical binary traversability method [10], and a deep learning-
based terrain traversability classification method [13] within our
3D cluttered environment. The following performance metrics
were used: 1) success rate, 2) cumulative travel distance to
account for terrain and path variability, 3) cumulative travel time
for successful trials, and 4) replanning rate. The same 20 location
pairs were used in this experiment.
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Fig. 8. Performance metrics: (a) success rate, (b) cumulative travel distance,
(c) cumulative travel time, and (d) path replanning rate.

1) Comparison Methods: Classical Method: We choose a
common heuristic rule-based method for comparison, e.g., [7],
[8], [10]. This method computes a binary traversability value
using a linear combination of height, slope, and roughness of
the terrain, which is then compared against a set threshold.

Deep Learning (DL) Method: We choose the DL method in
[13] as it incorporates the standard CNN architecture for terrain
traversability estimation. The CNN architecture consists of a
60 px by 60 px image input layer, two consecutive 3 × 3 CONV
layers, a 2 × 2 max-pooling layer, a 3 × 3 CONV layer, a 128
output FCL layer, a 2 output FCL, and a softmax output.

The output of both methods is a 2D traversability map. To
ensure a fair comparison, the heuristic parameters in [10] and
the hyperparameters in [13] were used. A∗ was used on the
traversability maps to search for paths to the 20 goal locations.
The robot executed the navigation plans for all three methods
using the Closed-Loop Controller module.

2) Comparison Results: The performance metrics for all
three methods are presented in Fig. 8. The classical method had
the lowest success rate of 18%, followed by the DL method at
43%. Our DRL approach had the highest success rate of 87%.
Amongst the three methods compared, our DRL method had
the shortest cumulative distance traveled and travel time among
the successful trials with a distance of 14.51m in 227s versus
15.26m in 379s for the DL method and 15.47m in 451s for the
classical method, respectively. In general, both the classical and
DL methods had lower performance than our DRL method as
they use a multi-stage approach, while our DRL method uses a
single stage approach that directly maps the observation space
to an action output. As the multi-stage approaches first estimate
traversability, then use a search algorithm to find a path, they are
known to suffer from cascading errors [37], where errors from
the traversability estimation are transferred to the path planning
stage. Namely, since the traversability estimation stage produces
a simplified representation of traversability (e.g., categorical
label or scalar value), it does not consider the robot-terrain
interactions that are present when navigating 3D rough terrain
environments. However, our DRL method directly considers
these interactions.

Fig. 9(a) shows the paths that the robot traveled for all three
methods for Test 3 in Table I. The robot’s path using the classical
method abruptly ended at location A, Fig. 9(b). This was due
to the method misidentifying traversable paths surrounding the
robot as non-traversable in region A. Therefore, the robot was
not able to determine a long-range traversable path to the goal
location and became stuck. Using the DL method, the robot
flipped over at location C due to it not being able to execute
its planned path. Specifically, the robot’s interactions with the
terrain at location B did not result in its intended action due
to an undesirable lateral shift that caused it to overshoot the

Fig. 9. Test 3: (a) robot path using classical method (orange), DL method
(light green), and DRL method (blue), and DL planned path (dark green), (b)
Traversability map for classical method for region A, and (c) Robot-terrain
interactions at region B.

TABLE II
EVALUATION PARAMETERS

rotation, Fig. 9(c). Subsequent motion errors also caused the
robot to diverge further from the plan. Alternatively, the robot
using our DRL method successfully reached its goal location.
Our DRL method inherently accounts for the robot-terrain inter-
actions during the learning process via its single stage end-to-end
approach and the aforementioned reality gap strategies.

The overall replanning rate of our method was 3.2Hz versus
1.8Hz for the classical method, and 3.8 Hz for the DL method.
Our replanning rate was slightly slower than the DL method due
to its requirement of larger input images (i.e., 200px by 200px vs
60px by 60px) and a larger network architecture with additional
CONV and FLC layers (Fig. 2).

C. Sensitivity Analysis

We conducted a sensitivity analysis of the hyperparameters of
the sim-to-real strategies in generalizing to increasingly complex
terrain in simulation. We evaluated the performance of models
that were trained 1) with all three strategies, and 2) in the absence
of one of these strategies by increasing the hyperparameter
values until they were 8 times the values in Section III.D.2,
Table II. No external movement disturbance was applied to the
robot during evaluation.

The results are presented in Fig. 10. The E+MD+P (elevation
steepness+motion disturbance+ pose estimation errors) model
was trained with all three strategies. As seen from the figure,
this model was able to consistently maximize the cumulative
reward for each set of hyperparameter values. The E+MD
and MD+P models performed worse under larger parameter
variations, emphasizing the importance of both the E and P
strategies in improving performance with respect to reward
maximization, and generalizing to large terrain variations and
robot pose estimation errors.
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Fig. 10. Sensitivity analysis of model performances. E: trained with elevation
steepness, MD: trained with motion disturbance, and P: trained with pose
estimation errors.

V. CONCLUSION

In this letter, we present the sim-to-real pipeline that teaches
a robot to navigate 3D cluttered real-world terrains which can
have abrupt changes in surface normals and elevations. Namely,
we use a unique combination of sim-to-real strategies to allow
for the transfer of the DRL navigation policies learned in simu-
lation to be successfully deployed to the real-world environment
without additional training in the real-world. Experiments with
a mobile robot showed that the robot had a high success rate
in navigating the 3D cluttered environment. Furthermore, a
comparison study against a classical and a deep learning method
verified that an end-to-end DRL approach performed better in
terms of success rate as well as cumulative travel distance and
time. DRL has the potential limitation of overfitting to a training
environment. Thus, it can have difficulty generalizing to other
real-world unstructured environments that contain dissimilar ter-
rain from the training environment. To overcome this limitation
would require: 1) representing the vast variability in terrain
within the training stage, or 2) extending the CNN architecture
to include techniques such as regularization and dropout layers.
This is currently a part of our future work. Additionally, we
will improve the robustness of the sim-to-real pipeline for the
failure cases observed. We will also incorporate our navigation
system with our previously developed exploration method [38],
where the exploration method can provide goal locations to our
proposed rough terrain navigation system.
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