Taskography: Evaluating robot task planning over large 3D scene graphs

Christopher Agia, Krishna Murthy Jatavallabhula, Mohamed Khodeir
Ondrej Miksik, Mustafa Mukadam, Vibhav Vineet, Liam Paull, Florian Shkurti
1University of Toronto, 2Montreal Robotics and Embodied AI Lab, Mila, Université de Montréal, 3Microsoft, 4Facebook AI Research, 5Vector Institute

1 Taskography is a robotic task planning benchmark grounded in large-scale 3D scene graphs from real-world distributions

2 The current taxonomy of symbolic task planners consists of 18 classical and learning-based methods - paradigms include: Optimal/satisficing propositional planners, SAT solvers, tree search, regression planning, relational RL policies, state space sparsifiers

3 By open-sourcing Taskography-API, we enable researchers to create novel planning domains and sample datasets of tasks

4 We hope our works spurs ongoing research along the lines of multi-task robot planning and spatial scene representations

Taskography: Benchmark on selected grounded and lifted Rearrangement and Courier planning domains.

Rearrangement domains require the agent to deliver \(k \) items to \(k \) target locations; Courier domains further equip the agent with a knapsack to stow objects as it traverses the scene. (Red) Optimal planners work only the simplest of domains, failing to scale with increasing task complexity. (Orange) Satisficing planners degrade in domains requiring long-horizon reasoning. (Green) Learning-based planners that prune the state space excel on all domains.

In Taskography-API, we provide interfaces for easy specification of customized symbolic planning domains and problems over 3D scene graphs. We also provide a python interface to access all classical and learning-based planners in the benchmark, enabling easy testing and integration of newer, learning-based planning solutions. For more details, please visit https://taskography.github.io

SCRUB: A procedure for pruning 3D scene graphs via task-conditioning

SCRUB is a preprocessing algorithm tailored to 3D scene graphs that drastically reduces the state space of planning problems, while taking just a few milliseconds.

SEEK: Reachability of task relevant objects.

Performant learning-based task planners employ NNs to score task relevant objects prior to planning. Augmenting them with SEEK substantially reduces replanning iterations by ensuring that all important objects are reachable for the robot.
Taskography: Evaluating robot task planning over large 3D scene graphs

*Equal contribution